BMGT 221 - MANAGERIAL ACCOUNTING

Chapter 1,2,3 - Manufacturing Overhead / Intro
Manufacturing Costs = DM + DL + MOH || Prime Costs = DM + DL || Conversion Costs = DL + MOH POHR = Est. Total Manufacturing Costs / Est. Total Units in the allocation base
MOH Applied =POHR * Act. Base \quad Schedule of Cost of Goods Sold Overapplied (Underapplied) MOH $=$ MOH Applied - Act. Base Var. Cost per Unit = Change in Total Cost / Change in Units

Direct Cost - Costs traced to a unit of productions (DL \& DM) Indirect Costs - Costs that can't be easily traced (MOH)
Examples of MOH: Dep., Utilities, and Property Costs
Non-manufacturing costs: Selling and Admin.

Schedule of Cost of Goods Sold	
Beginning Finished Goods Inventory	xxx
Cost of Goods Manufactured (+)	$\underline{x x x}$
Cost of Goods available for Sale	xxx
Ending Finished Goods Inventory (-)	$\underline{x x x}$
Unadjusted Cost of Goods Sold	xxx
Overapplied/ Underapplied Overhead (-/+)	$\underline{x x x}$
Adjusted Cost of Goods Sold	xxx

Schedule of Cost of Goods Manufactured	
Direct Materials:	
Beginning Raw Materials Inventory	xxx
Raw Materials Purchased (+)	x X X
Raw Materials available for Production	xxx
Ending Raw Material Inventory (-)	xxx
Total Raw Materials Used	xxx
Direct Labor	
Manufacturing Overhead Applied	$\underline{x x x}$
Total Manufacturing Costs	
Beginning Work-in-Process Inventory (+)	$\underline{x x x}$
Total Work-in-Process	
Ending Work-in-Process Inventory (-)	$\underline{x \times x}$
of Goods Manufactured	

Acronym Key:
Act: Actual
Admin: Administrative
CM: Contribution Margin
Dep: Depreciation
DL: Direct Labor
DM: Direct Materials
Est: Estimated
Exp: Expenses
Fxd: Fixed
MOH: Manufacturing Overhead
Oper: Operating
POHR: Predetermined Overhead Rate
Var: Variable

Chapter 5 - CVP Analysis
CM = Total Sales - Var. Exp. || CM Per Unit = Sale Price per Unit - Exp. per Unit || CM\% = CM / Total Sales Break Even: Profit = $0 \|$ Dollar Sales to Break Even = Fxd. Exp. $/ \mathrm{CM} \%$ Dollar Sales to Reach Target Profit = (Fxd. Exp. + Target Profit) / CM\% Margin of Safety in Dollars = Total Sales - Dollar Sales to Break Even Margin of Safety\% =Margin of Safety in Dollars / Total Sales
Degree of Oper. Leverage = CM / Net Oper. Inc.
Change\% in Net Inc. = Degree of Oper. Leverage * \%Change in Sales

Contribution Format Inc Statement	
Sales	xxx
Variable Expenses	xxx
Contribution Margin	xxx
Fixed Expenses	$x \times x$
Net Oper. Inc. (Loss)	xxx

Chapter 6 - Variable Costing
Traceable Fxd. Costs - A fxd. cost incurred by a specific business segment. Is eliminated if the segment is eliminated.
Common Fixed Costs - A fxd. cost that supports more than one business segment. Cannot be eliminated
Segment Margin - A segment's CM - Traceable Fxd. Costs. (Segment's net inc. (loss))

Chapter 8 - Budgeting
Planning - Developing objectives and preparing various budgets to achieve them
Control - Management actions to achieve those objectives

$A Q=$ Actual Quantity; $A P=$ Actual Price
SQ $=$ Standard Quantity; $S P=$ Standard Price
****NOTE: Positive value means it is Favorable, Negative is Unfavorable

Chapter 11 - Performance Measurement in Decentralized Organizations

Return on Investment (ROI) = Margin * Turnover $=($ Net Oper. Inc. / Sales) * (Sales / Assets
Margin = Net Oper. Inc / Sales || Turnover = Sales / Assets
Residual Inc. $=$ Net Inc. $-($ Assets * Required ROI)
Throughput (Manufacturing Cycle) Time = Process (Value Added)+ Inspection + Move + Queue
Delivery Cycle Time = Throughput Time + Wait
Manufacturing Cycle Efficiency = Process $/$ Throughput Time

Decentralized Organizations - Decisions are commonly made at the lower levels of management
Residual Income is a better motivator for managers than ROI since with ROI a manager may not accept a project that would have been
good for the company since the ROI might be below the managers ROI

Responsibility Center	Responsibilities
Cost Center	Expenses
Profit Center	Expenses and Rev
Investment Center	ROI Residual Inc

Chapter 12 - Differential Analysis
Relevant Cost - Cost that differs between alternative || Relevant Benefit - Benefit that differs between alternatives
Avoidable Cost - Cost that can be eliminated by choosing one alternative over another
rrelevant Costs - Sunk costs and future cost that doesn't differ between the options
Avoidable / Differential are used interchangeably
Opportunity Cost only applies only if the resources freed up by choice A can be used by choice B
Bottleneck - A limiting resource on the quantity produced. This causes the need to factor in opportunity cost.
Joint Costs - Common costs between two products which is not factored into the decision process

Two Step Process			
Eliminate costs and benefits that do not differ between option			
2. Use Rem	Use Remaining Costs and benefits that differ to make decisio		
Example:			
	Option A (Keep)	Option B (Drop)	Difference (B-A)
Sales	\$400,000	\$0	\$ 400,000)
Variable Expenses	\$200.000	\$0	\$200.000
Contribution Margin	\$200,000	\$0	\$(200,000)
Fixed Expenses:			
Factory Overhead	\$90,000	\$90,000	\$0
Salary of Manager	\$100,000	\$0	\$100,000
Depreciation	\$80,000	\$80,000	\$0
Total Fixed Expenses	\$270,000	\$170,000	\$90,000
Net Income	\$(70,000)	\$(170,000)	\$(100,000)

${ }^{*}$ Note: Although this product line technically is operating at a loss, dropping it would cause the firm to lose even more.

Chapter 13 - Present Value

Present Value of $\$ 1=$ Cash_Flow * $\left(1 /\left[(1+r)^{\wedge} n\right]\right)=$ Cash_Flow * (Multiplier on Chart) || n - number of periods, r - discount rate
Present Value of an Annuity of $\$ 1$ in Arrears $=(1 / r)^{*}\left(1-\left[1 /\left([1+r]^{\wedge} n\right)\right]\right)=$ Periodic Cash Flow * (Multiplier in chart)
Simple rate of return $=($ Annual Incremental Net Oper. Inc.) $/$ (Initial Investment)
Payback Period $=($ Investment Required) $/($ Annual Net Cash Inflow)
Factor of IRR = (Investment Required) / (Annual Net Cash Inflow) || Use this value to plug back into the chart, knowing the \#of period to find the rate Working Cost of Capital= (Current Assets) - (Current Liabilities)
Net Present Value $=($ Sum of Present Value Cash Inflows) $-($ Sum of Present Value Cash Outflows)
REMEMBER, DEPRECIATION IS NOT A CASH OUTFLOW
Cash Outflows/ inflows - Any cash that the investment moves (Initial investments, equipment, working capital, revenues, but NOT DEPRECIATION)
Payback method - IGNORES TIME VALUE, describes exclusively the cash flows to get to cover the initial investments, good for screening
Net Present Value - All cash flows including any time value
Choosing a Discount rate - minimum required return

	Accounting or Cash_Flow		Time Value
Net Present Value	Cash Flow	Yes	Need Upfront
IRR	Cash Flow	Yes	Compare After (If IRR>r accept) (If IRR< r deny)
Payback Period	Cash Flow	No	Don't Need
Simple Rate of Return	Accounting	No	Don't Need

Net present Value Example: A company has a new 5 year investment it is pursuing,

- It requires $\$ 125,000$ Equipment that has a salvage value of $\$ 10,000$ at the end of the 5 year investment and depreciates based on a straight line
- It requires a working capital of $\$ 100,000$ which will be released at the end of the 5 years
- It has a Net Cash Inflow of \$50,000 each year
- It has a special event cost that occurs on the 3rd year of $\$ 20,000$
- The discount rate is 10%

Net Present Value:

Event	Year(s)	Cash Flow	10% Factor		
	Present Value	$\$(125,000)$	1^{*}		$\$(125,000)$
Equipment	Now	$\$(100,000)$	1		$\$(100,000)$
Working Capital	$1-5$	$\$ 50,000$	$3.791^{* *}$		$\$ 189,550$
Annual Cash Flows	3	$\$(20,000)$	$.751^{* * *}$		$\$(15,020)$
Special Event	5	$\$ 10,000$.621		$\$ 6,210$
Salvage Value of Equipment	5	$\$ 100,000$.621		$\$ 62,100$
Release of Working Capital	5			$\$ 17,840$	
Net Present Value					

*Since this is an initial investment
** Present Value of an Annuity of \$1 in Arrears Chart ($n=5, r=10 \%$)
***Present Value of $\$ 1$ Chart ($n=3, r=10 \%$)

BMGT 340 - INTRO TO FINANCE

Chapter 1 - Intro to Finance

	\# of Owners	Liability For Owners	Owners Manage Firm	Ease of Forming	Ease of Raising Capital	Ownership change dissolves firm	Taxation
Sole Proprietorship	One	Yes	Yes	Easy	Hard	Yes	Personal
Partnership	Unlimited	Yes; For each partner	Yes	Easy	Hard	Yes	Personal
LLP	>1 GP No Limit LP	$\begin{aligned} & \text { GP - Yes } \\ & \text { LP - No } \end{aligned}$	$\begin{aligned} & \text { GP - Yes } \\ & \text { LP - No } \end{aligned}$	Hard	Easy	$\begin{aligned} & \text { GP - Yes } \\ & \text { LP - No } \\ & \hline \end{aligned}$	Personal
LLC	Unlimited	No	Yes	Hard	Easy	No	Personal
S corp	<=100	No	No	Hard	Easy	No	Personal
C corp	Unlimited	No	No	Hard	Easy	No	Double

Financial Manager's Roles - Investments (Most important), Financing, Cash Management
Financial Manager's objective - Maximize Shareholder Wealth
Agency Conflict - The agent is supposed to act in the principal's interest but has incentives to work in their own interest
Primary Market - A company's initially sale of shares to the market
Secondary Market - Trading between Investors
Accounting Equation: Assets $=$ Liabilities + Equity
Arbitrage - Being able to buy/sell something for a differential price at the EXACT same time
Corporate Decision process - Shareholders elect Board of Directors who pick the CEO

Equations:

ROE $=$ (Net Inc. / Sales) $)^{*}$ (Sales/Total Assets) ${ }^{*}$ (Total Assets/Total Equity)
[Margin] [Turnover] [Equity Multiplier]

Remaining Dividends = Earnings Before Taxes * (1-Corporate Tax\%) * Paid as Dividends\% * (1-Personal Tax\%)
Chapter 3
Competitive Market - A Market in which a good can be bought and sold at the same price
Valuation Principle - The value of an asset is determined by its competitive market price. Decisions where benefits outweigh the cost will increase firm value
Law of One Price - A goods price on one market is the same as another
Arbitrage - Buying and selling goods between markets
Years to Double - $72 /$ IR
Equations
PV $=C /\left([1+r]^{\wedge} n\right)$
FV $=C^{*}\left([1+r]^{\wedge} n\right)$

Chapter 4

Perpetuity - Regular cash flow indefinitely
Annuity - Fixed number of regular cash flows
Equations
PV (Perpetuity) $=\mathrm{C} / \mathrm{r} \quad$ NOTE: The first cash flow is in a year
$\mathrm{PV}($ Annuity $)=C *\left(\frac{1}{r}\right) *\left(1-\frac{1}{(1+r)^{n}}\right)$
PV (Growing Perpetuity) $=\mathrm{C} /(\mathrm{r}-\mathrm{g})$
PV (Growing Annuity) $=C *\left(\frac{1}{r-g}\right) *\left(1-\left[\frac{1+g}{1+r}\right]^{n}\right)$

Chapter 5 - Effective Rates

Effective Rates - The combined payment period rates for a specific amount of time
EAR - Effective Annual Rate, the effective rate for 1 year
Normal Yield Curve - Expectation for rising rates, shorter period bonds have a lower yield and longer period bonds have higher yield rates
Inverted Yield Curve - Expectation for falling rates, indicator of a potential recession,shorter period bonds have a higher yield whereas longer bonds have a lower yield

Equations

Equivalent nth-period discount rate $=\left([1+r]^{\wedge} n\right)-1$
$\operatorname{EAR}($ From an APR $)=\left(1+\frac{A P R}{m}\right)^{m}-1$
NomRate $+1=(1+\text { RealRate })^{*}(1+$ InflationRate $)$
Interest Portion of Loan Payment $=$ rate*PV at the time of payment
Principal Portion of Loan Payment $=$ payment-InterestPortion

Chapter 6 - Bonds

 will be paid at the expiration of the Bond | Price - The amount of money by which the market has been evaluating this bond at
Changing market rates hurt both short and long term bonds. If market rates increase, then the price of the bonds go down and the reverse is true.
Long term bonds are more affected by the changes than short term bonds.
Sometimes bonds are able to be called at a certain price and time by the issuer. In which case a yield to call based on this call can be calculated.

Zero Coupon Bond - A bond that has no interest payment
Zero Coupon Bonds
Yield to Maturity $=(\text { Face Value } / \text { Price })^{\wedge}(1 / \mathrm{N})$
Coupon Bonds
Coupon Payment(CPN) $=($ Coupon Rate * Face Value)/\#Payments per year
$\mathrm{PV}=C P N *\left(\left[\frac{1}{r}\right] *\left[1-\frac{1}{(1+r)^{N}}\right]\right)+\frac{\text { Face Value }}{(1+r)^{N}}$
Current Yield = Annual CPN / Price
Yield to Maturity - Use the PV Formula, and solve for r

Chapter 7 - Stocks

They really over complicated this chapter in my opinion. In short: the present value of a hare of a company is just THE PRESENT VALUE OF EXPECTED DIVIDENDS Retention Rate - The portion of earnings the company retains to continue growth (1-dividend payout rate)
Dividend Payout Rate - The portion of earnings the company pays out to shareholders (1-retention rate)
Higher Risk - When there is higher risk, investors will require a higher rate of return
Eormulas
Time Dividend Discount Model
PV of uneven dividends: $P_{0}=D_{1} /\left([1+r]^{\wedge} 1\right)+\ldots D_{N} /\left([1+r]^{\wedge} N\right)$
PV of Constant Growth $=D_{1} /(r-g)$
$\mathrm{g}=$ Retention Rate * Returns on New Investments
Share Repurchase and Total Payout - $\mathrm{P}_{0}=\mathrm{PV}$ (Future Total Dividends and Repurchases) / Shares Outstanding

Chapter 8 - NPV and IRR

NPV - The present value of all future inflows and outflows. If NPV > 0 the project creates value for the firm; If NPV < 0 the project is a net negative value for a firm IRR - The rate for an investment where the NPV is zero, a higher IRR is generally a good thing
Non Conventional Cash Flows - When your outflows occur later than the inflows
Modified IRR - (FV[inflows] / PV[outflows])^(1/N) -1
Crossover Rate - the rate where two different investments will have the same NPV. To Solve, do an IRR calculation where each cash flow is the difference between each of the investments Evaluating Based on Bottlenecks: Profitability Index = NPV / Bottleneck Cost (such as man hours, cash, or staff, or materials)

Method	When To Accept	When To Not Use	Evaluating Mutually Exclusive
NPV	>0	When other options might be better dependent on constraints (man hours)	Take the Highest NPV
IRR	>Discount Rate	Non-Conventional Cash Flows	Depends on Crossover Rate
MIRR	>Discount Rate	When you don't have the discount rate	Higher MIRR
Payback	<Arbitrary \#	NEVER USE, IT DOES NOT ACCOUNT FOR TIME VALUE	Smaller Payback Period

Chapter 9 - Capital Budgeting

CapEx - Capital Expenditures
NWC - Net Working Capital = Current Assets - Current Liabilities = Cash + Inventory + Receivables - Payables
Incremental Earnings $=($ Incremental Revenues - Incremental Costs - Depreciation $) *(1-$ Tax Rate $)$
Payback Period = |initial cash outflow| / |recurring cash inflow| = The amount of time till the initial payment is returned
Annual Straight line Depreciation = (Purchase Value - Salvage Value)/Years
After Tax Cash Flow from Asset Sale = Sale Price - (Tax Rate * Gain/Loss on Sale)
Gain/Loss on Sale $=$ Sale Price - Book Value
Book Value $=$ Purchase Value - Accumulated Depreciation $=$ Purchase Value $-($ Years * Depreciation per Year)
Free Cash Flow = (Revenues - Costs - Depreciation) * (1-Tax Rate) + Depreciation - CapEx - Changes in NWC
EBIT = (Revenues - Costs - Depreciation)

Matters For Decision -	Doesn't Matter For
	Decision - Not Incremental
Incremental	Sunk Costs
Opportunity Cost	Research Costs
Capital Expenditures	Research
Product Cannibalization	
Sales, Costs, Depreciation	
Net Working Capital	

Chapter 10 - More Stock Evaluation

The value of a Company should be an accumulation of all of its projects
Firm Value $\left(\mathrm{V}_{0}\right)=\mathrm{PV}$ (Future Free Cash Flows)
Terminal Value Constant Growth $\mathrm{V}_{\mathrm{N}}=\mathrm{FCF}_{\mathrm{N}+1} /(\mathrm{r}-\mathrm{g})$
$\mathrm{P}_{0}=\left(\mathrm{V}_{0}+\right.$ Cash $_{0}-$ Debt $\left._{0}\right) /$ Shares Outstanding
MV of Equity = MV of Firm - MV of Debt

Chapter 10 - More Stock Evaluation

These ratios are dependent on the market average for the firm in question. For example, Microsoft's PE would be compared to the average PE of companies in the tech industry
Characteristics of an efficient market: Factor in new information quickly, large volume of buyers and sellers, prices reflect true value
S\&P, Dow Jones, NASDAQ, and Russell 2000 are good indicators
$\mathrm{P}_{0}=\left(\mathrm{V}_{0}+\right.$ Cash $_{0}-$ Debt $\left._{0}\right) /$ Shares Outstanding (From the last exam)
Multiples - Applicable for businesses relevant to other similar businesses
PE ratio $=$ Share Price $/$ Earnings Per Share $=$ Market Cap $/$ Earnings

Chapter 11 - Return and Return

Return from T0 and T+1: $\mathrm{R}_{\mathrm{t}+1}=\left(\left[\operatorname{Div}_{t+1}\right]+\left[\mathrm{P}_{t+1}\right]-\left[\mathrm{P}_{\mathrm{j}}\right]\right) /\left[\mathrm{P}_{\mathrm{J}}\right]=$ Dividend Yield + Capital Gain Yield
Dividend Yield $=$ Div $_{t+1} / P_{t}$
Capital Gain Yield $=\left(P_{t+1}-P_{t}\right) / P_{t}$
Average Return $=1 / T\left(R_{1}+R_{2} \ldots+R_{T}\right)$
Realized/annualized return $=\left[1+R_{1}\right]^{*}\left[1+R_{2}\right]^{*} . . .{ }^{*}\left[1+R_{1}\right]$
Return Variance $=(1 /[T-1])^{*}\left(\left[R_{1}-(\text { Average Return })\right]^{2}+\left[R_{2}-(\text { Average Return })\right]^{2}+\ldots+\left[R_{t}-(\text { Average Return })\right]^{2}\right)$
Geometric average (CAGR) $=\left(\left[1+R_{1}\right]^{*}\left[1+R_{2}\right]^{*} \ldots{ }^{*}\left[1+R_{t}\right)^{1 / 4}\right.$
Standard Deviation is the square root of the variance
95% certainty range $=$ Average $\pm\left(2^{*}\right.$ Standard Deviation)

Chapter 12 - Cost of Capital

Risk = Standard Deviation
Weight of a holding in a portfolio $(\mathrm{w})=$ Value of investment $/$ Total Value of portfolio
Expected Return of a portfolio $=w_{1}{ }^{*} R_{1}+w_{2}{ }^{*} R_{2}+$
Variance of a Portfolio $=\left(w_{1}\right)^{2 *}\left(\sigma_{1}\right)^{2}+\left(w_{2}\right)^{2 *}\left(\sigma_{2}\right)^{2}+2^{*} w_{1}{ }^{*} w_{2}{ }^{*}\left(\rho^{*} \sigma_{1}{ }^{*} \sigma_{2}\right)$
Can also be restated as $\sigma_{1,2}$ also known as the covariance
 CAPM expected rate $=$ risk free rate + Beta * (market rate - risk free rate $)$

Chapter 13 - WACC

Wacc $=w_{d}{ }^{*} r_{d}{ }^{*}(1-t)+w_{p}{ }^{*} r_{p}+w_{e} r_{e}$

$w_{d}=D / N=$ weight of debt	$r_{d}=$ Yield to maturity of debt
$w_{p}=P / N=$ weight of preferred stock	$r_{p}=$ Div $_{p} /$ Price

$\begin{array}{ll}w_{p}=P / V=\text { weight of preferred stock } & r_{p}=\text { Diviv }_{\rho} \text { Price }_{p} \\ w_{e}=E / N=\text { weight of equity } & r_{e}=\text { Div }_{1} / \text { Price }_{0}+g=\text { CAPM }\end{array}$
$\mathrm{V}=\mathrm{D}+\mathrm{P}+\mathrm{E}$
D - Market Value Debt; P - Market Value of Preferred Stock; E - Market Value of equity aka common stock
Calculator Guide

TVM Solver	In short, this takes in the information that you would make with a timeline N-Number of Payments I\%-Compounding Rate PER PAYMENT PERIOD PV - Present Value PMT - CONSISTENT cash flows over the life of the investment FV - Future Value END/BEGIN - Keep on END unless there's a time zero payment (Payment right at the start) Any of the above variables can then be solved using tvm_[THING]
Eff(Returns Effective Rate Eff(APR,numberOfCompoundsInYear) Ex: APR on loan is 10% and it compounds moneth, what is the effective annual rate (EAR): Eff(10,12)=10.47
Nom(Converts effective rate to nominal annual rate (APR) Nom(EAR,numberOfCompoundsInYear) Ex: EAR is 10% and it is compounded daily $\operatorname{-Nom}(10,365)=9.53$
npv($\begin{aligned} & \text { Calculating the present value of uneven cash flows } \\ & \text { npv(rate, initia cash flow, \{cash flow 1,c2,c3\}) } \\ & \text { Ex: You get a cash flow } 100,150,250 \text {, at the end of year 1,2, and 3. IR:5\% } \\ & \operatorname{npv}(5,0,\{100,150,250\})=447.25 \end{aligned}$
irr($\begin{aligned} & \text { Returns the Internal Rate of Return for a series of cash flows } \\ & \text { irr(initial cash flow,\{CF1,CF2,CF3, ...\}) } \\ & \text { Ex: what is the irr of an initial investment of } \$ 2000 \text { and returns } \$ 2000 \text { and } \$ 500 \\ & \text { irr(-2000, }\{2000,500\})=20.71 \end{aligned}$

BMGT 343 - FINANCIAL INSTRUMENTS

Chapter 0 - Math and Stat Review: Produced by John Iler

Expected Value $E[x]=\sum_{i=1}^{N} p_{i} x_{i}$ III Variance $\sigma_{x}^{2}=\operatorname{Var}[x]=E\left[\left(x-\mu_{x}\right)^{2}\right]=E\left[x^{2}\right]-\mu_{x}^{2}=p_{1}\left(x_{1}-\mu_{1}\right)+p_{2}\left(x_{2}-\mu_{2}\right)+\ldots$
Skewness $=E\left[\left(\frac{x-\mu_{r}}{\sigma}\right)^{3}\right]=\frac{\sum_{i=1}^{N} p_{i}\left(x_{i}-\mu_{t}\right)^{3}}{\left[\sum_{==1}^{N} p_{i}\left(x_{i}-\mu_{x}\right)^{2}\right]} 1.5 \quad$ ||I Kurtosis $=E\left[\left(\frac{x-\mu_{r}}{\sigma}\right)^{4}\right]-3=\frac{\sum_{i=1}^{N} p_{i}\left(x_{i}-\mu_{x}\right)^{4}}{\left[\sum_{i=1}^{N} p_{i}\left(x_{i}-\mu_{x}\right)^{2}\right]}{ }^{2}$
Covariance $=\sigma_{x, y}=\operatorname{Cov}[\mathrm{x}, \mathrm{y}]=\mathrm{E}\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)\right]=\sum_{i=1}^{N} p_{1}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)| |\left|\operatorname{Cov}\left[\mathrm{b}_{1} \mathrm{x}, \mathrm{b}_{2} \mathrm{y}\right]=\mathrm{b}_{1} \mathrm{~b}_{2} \operatorname{Cov}[\mathrm{x}, \mathrm{y}]\right|| | \operatorname{Cov}[\mathrm{A}+\mathrm{B}+\mathrm{C}, \mathrm{D}+\mathrm{E}]=\operatorname{Cov}[\mathrm{A}, \mathrm{D}]+\operatorname{Cov}[\mathrm{A}, \mathrm{E}]+\operatorname{Cov}[\mathrm{B}, \mathrm{D}]+\ldots$
Correlation $=\rho_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}$
$\mathrm{y}_{1}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x} \quad \mathrm{b}_{1}=\operatorname{cov}(\mathrm{xy}) / \operatorname{var}(\mathrm{x})=\operatorname{stddev}(\mathrm{y})^{*} \rho_{x y} / \operatorname{stddev}(\mathrm{x})$
$R=\rho$
Chapter 1 - Bonds
Yield $=\left[(\text { Face Value }) / \text { price }_{0}\right]^{\wedge}(1 / \mathrm{N})$
Future rate $\mathrm{F}_{\mathrm{n}}=$ Current price of $\mathrm{n}-1 \mathrm{zcb} /$ current price of n zcb -1
Future rate $F_{n}=\left(1+y_{n}\right)^{n} /\left(1+y_{n-1}\right)^{n-1}-1$
Forward price $=\mathrm{S}_{0}(1+\mathrm{y})^{\mathrm{t}}-\mathrm{FV}$ (Div)

Bond Risk

Value (10yr) and Value (1yr)

Interest Rate Risk Immunization				
The Goal is:	$\mathrm{AModD}_{\text {A }}=\mathrm{L} \mathrm{ModD}_{\mathrm{L}}$	OR	$\mathrm{AMacD}_{\mathrm{A}}=\mathrm{LMac}_{\mathrm{L}}$	USE PRESENT VALUE FOR A AND L
ModD $=(-\mathrm{dp} / \mathrm{dy})(1 / \mathrm{p})$	OR (dp/p)			
ModD $=(1 /(1+y)$ MacD				
$\mathrm{MacD}=$ weighted average time to cash flow arrival, PV of cashflows used as weights				
PV Perp = C/y	ModD Perp $=1 / \mathrm{y}$			

Chapter 2 - Investments

Derivative Yields

Chapter 3-Options

European - On the date of < American - any time between now and expiration
T-Expiration Date | S - Price Underlying | K - Exercise price | C - Value of Call Option | Value of Put option
$\mathrm{C}_{\mathrm{T}}=\max \left(0, \mathrm{~S}_{\mathrm{T}}-\mathrm{K}\right) \mid \mathrm{P}_{\mathrm{T}}=\max \left(0, \mathrm{~K}-\mathrm{S}_{\mathrm{T}}\right)$
Profit

Connect the Dots:

1. Every time there may be a kink (whenever a option begins paying [when ST is above/below $\mathrm{K} \mathrm{K}_{1}$ for calls/puts])in the portfolio calculate the value of the portfolio as a whole once that point is reached. Put a point there
2. Pick one ST value to the right of the furthest kink to the right and add one more point there Do the same for if ST is 0
3. Connect all the dots

Example
Portfolio has 1 ZCB @\$100, short . 5 put @\$50, long 1 call @\$75

1. Kinks at 50 and 75

Value $@ 50=100+.5 \min (\mathrm{~K}-\mathrm{ST}, 0)+\max (\mathrm{ST}-\mathrm{K}, 0)=100+.5 \min (50-50,0)+\max (75-100)=$ $100+0+0=100$
Value @75 = 100+. $5 \min (75-50,0)+\max (75-75,0)=100+0+0=100$
2. Value @100 = 100 $+.5 \min (100-50,0)+\max (100-75,0)=100+0+25=125$

Value @0 = 100+.5min (0-50,0)+max (0-75,0) = 100-25+0 =50

Slope Addition:

1. Find the value of the portfolio as a whole if ST is 0 . This is your starting point.
2. Identify Each kink point on ST
3. \quad Calculate the slope (how many of the derivative/or whatever you own) for each section of the graph.
4. In each of the sections between the kinks, find the total portfolio slope by adding the individual slopes
5. Starting at the starting point you found in step 1 , draw at the corresponding slope through each section of ST
Example
Portfolio has 1 ZCB $@ \$ 100$, short .5 put $@ \$ 50$, long 1 call $@ \$ 75$
6. \quad Value $@ 0=100+.5 \min (0-50,0)+\max (0-75,0)=100-25+0=50$
7. $50 \& 75$
8.

ZCB: slope is 0 always
Short Put: . 5 slope for $0-50$, slope 0 for the rest
Long call: 1 slope for everything past 75
4. $0-50: 0+.5+0|50-75: 0+0+0| 75$-Infinity and Beyond: $0+0+1$

Covered Call	Protective Put	Collar	Straddle	Strangle	Synthetic Forward
Long 1 Share Short 1 Call	Long 1 Share Long 1 Put	Long 1 Share Long 1 Put(K<ST) Short 1 Call(K>ST)	Long 1 Call Long 1 Put Both at the same K	Long 1 Call K>ST Long 1 Put K<ST	Long 1 Call Short 1 Put Same K

Valuing Options/Option Portfolios

$U=e^{\wedge}(\sigma \vee h) \mid D=1 / U$
$S_{U}=S_{0}{ }^{*} U \quad \mid S_{D}=S_{0}{ }^{*} D$
$V_{U}=$ The value of the portfolio at $S T=S_{U} \mid V_{D}=$ The value of the portfolio at $S T=S_{D}$
$\Delta=\left(V_{U}-V_{D}\right) /\left(S_{U}-S_{D}\right)$
$V_{U}=\Delta^{*} S_{U}+D(1+Y)^{h}$ Solve for D
$\mathrm{V}_{0}=\Delta \Delta^{*} \mathrm{~s}_{0}+D$

Chapter 4 -Risk Vs Return

γ - Our Preference For risk. Greater = more risk averse
$\mathrm{U}\left[\mathrm{r}_{\mathrm{m}}\right]$ - Our happiness with a given investment dependent on risk
$E\left[r_{p}\right]$ - Expected return from a risky asset
$\mathrm{U}\left[\mathrm{r}_{\mathrm{m}}\right]=\mathrm{E}\left[r_{\mathrm{p}}\right]-1 / 2\left(\gamma^{*} \sigma_{\mathrm{p}}{ }^{2}\right)$
$\sigma_{P}{ }^{2}=w_{A}{ }^{2 *} \sigma_{A}{ }^{2}+w_{B}{ }^{2 *} \sigma_{B}{ }^{2}+2 w_{A} W_{B} \sigma_{A B}$
$\sigma_{A B}=\sigma_{A} \sigma_{B} \rho_{A B}$
Sharpe Ratio $=\left(E\left[r_{p}\right]-r f\right) / \sigma$
Preferred Weight of Risky Asset $=\left(1 /\left[\gamma^{*} \sigma\right]\right)^{\star}$ Sharpe Ratio
$\check{r}=$ premium rate $=r-r f$
TANGENTAL EQUATION:
$W_{B}{ }^{\text {MVE }}=\left(\left[\check{r}_{B} \sigma_{A}^{2}\right]-\left[\check{r}_{A} \sigma_{A B}\right]\right) /\left(\left[\check{r}_{B} \sigma_{A}^{2}\right]+\left[\check{r}_{A} \sigma_{B}^{2}\right]-\left[\left(\check{r}_{A}+\check{r}_{B}\right)^{*} \sigma_{A B}\right]\right)$

Chapter 5-CAPM

 $\mathrm{i}=$ the security in question $\mid \mathrm{m}=$ MVE portfolio | In some of these equations we may refer to m as a portfolio instead
$r_{i}=r_{f}+B_{i, m}{ }^{*}\left(r_{m}-r_{f}\right)$
$\mathrm{R}_{\mathrm{i}, \mathrm{m}}^{2}=\left(\mathrm{B}_{\mathrm{i}, \mathrm{m}}{ }^{2}{ }^{*} \sigma_{\mathrm{m}}{ }^{2}\right) / \sigma_{\mathrm{i}}{ }^{2}$
$B_{i, m}=\sigma_{i, m} / \sigma_{m}{ }^{2}--->$ simplifies to $B_{i, m}=\rho_{\mathrm{i}, \mathrm{m}}{ }^{*} \sigma_{\mathrm{i}} / \sigma_{\mathrm{m}}$

